Affiliation:
1. Institute of Information and Computing Sciences, Utrecht University 3508 TB Utrecht, the Netherlands, {roland,markov}@cs.uu.nl
Abstract
Many algorithms have been proposed that create a path for a robot in an environment with obstacles. Most methods are aimed at finding a solution. However, for many applications, the path must be of a good quality as well. That is, a path should be short and should keep some amount of minimum clearance to the obstacles. Traveling along such a path reduces the chances of collisions due to the difficulty of measuring and controlling the precise position of the robot. This paper reports a new technique, called Partial shortcut, which decreases the path length. While current methods have difficulties in removing all redundant motions, the technique efficiently removes these motions by interpolating one degree of freedom at a time. Two algorithms are also studied that increase the clearance along paths. The first one is fast but can only deal with rigid, translating bodies. The second algorithm is slower but can handle a broader range of robots, including three-dimensional free-flying and articulated robots, which may reside in arbitrary high-dimensional configuration spaces. A big advantage of these algorithms is that clearance along paths can now be increased efficiently without using complex data structures and algorithms. Finally, we combine the two criteria and show that high-quality paths can be obtained for a broad range of robots.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献