Affiliation:
1. Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
Abstract
In this paper, we propose a learning algorithm that speeds up the search in task and motion planning problems. Our algorithm proposes solutions to three different challenges that arise in learning to improve planning efficiency: what to predict, how to represent a planning problem instance, and how to transfer knowledge from one problem instance to another. We propose a method that predicts constraints on the search space based on a generic representation of a planning problem instance, called score-space, where we represent a problem instance in terms of the performance of a set of solutions attempted so far. Using this representation, we transfer knowledge, in the form of constraints, from previous problems based on the similarity in score-space. We design a sequential algorithm that efficiently predicts these constraints, and evaluate it in three different challenging task and motion planning problems. Results indicate that our approach performs orders of magnitudes faster than an unguided planner.
Funder
National Science Foundation
Honda Research
Air Force Office of Scientific Research
Charles Stark Draper Laboratory
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献