Extracting Object Contours with the Sweep of a Robotic Whisker Using Torque Information

Author:

Solomon Joseph H.1,Hartmann Mitra J. Z.2

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

2. Departments of Biomedical and Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA,

Abstract

Several recent studies have investigated the problem of object feature extraction with artificial whiskers. Many of these studies have used an approach in which the whisker is rotated against the object through a small angle. Each small-angle “tap” of the whisker provides information about the radial distance between the base of the whisker and the object. By tapping at various points on the object, a full representation of the surface can be gradually constructed in three-dimensional space. It is clear, however, that this tapping method does not exploit useful information about object contours that could be extracted by “sweeping” the whisker against the object. Rotating the whisker against the object through a large angle permits the collection of a sequence of contact points as the whisker slips along the surface. The present paper derives an algorithm based on a numerical cantilever beam model of the whisker to measure object profile shape over a single large-angle whisker rotation using only information about torque and angle at the whisker base. The algorithm is validated experimentally using three different object shapes. As the method does not require measurement of force, it is well suited for implementation on an array of robotic whiskers to accomplish quick and precise object feature extraction.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3