Sliding manipulation of rigid bodies on a controlled 6-DoF plate

Author:

Vose Thomas H1,Umbanhowar Paul1,Lynch Kevin M12

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA

2. Northwestern Institute on Complex Systems, Evanston, IL, USA

Abstract

We model the full dynamics of a rigid part in three-point frictional sliding contact with a flat rigid six-degree-of-freedom (6-DoF) plate. When the plate moves periodically, we show the part’s dynamics are well approximated by a first-order system represented by an asymptotic velocity field that maps part configurations in SE(2) to unique velocities (linear and angular) in ℝ2 . The form of the asymptotic velocity field depends on the plate’s motion, the location and friction coefficient of each contact point, and the inertial properties of the part. Asymptotic velocity vectors in the field approximate the part’s cycle-averaged velocity at each configuration and are independent of time or the system’s initial state. For the special case of a rigid part with infinitesimal thickness, we prove that asymptotic velocities are always unique and well defined. With the ability to program arbitrary periodic plate motions, part manipulation reduces to finding plate motions that generate asymptotic velocity fields to accomplish desired tasks. Several fields useful for manipulation tasks (e.g. sensorless part alignment) are verified in simulation and experiment.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3