Periodic Motions of a Hopping Robot With Vertical and Forward Motion

Author:

M'Closkey Robert T.1,Burdick Joel W.1

Affiliation:

1. Department of Mechanical Engineering California Institute of Technology Pasadena, California 91125

Abstract

This article analyzes the global dynamical behavior of sim plified hopping robot models that are analogous to Raibert's experimental machines. We first review a one-dimensional ver tical hopping model that captures both the vertical hopping dynamics and nonlinear control algorithm. Second, we present a more complicated two-dimensional model that includes both forward and vertical hopping dynamics and a foot placement algorithm. These systems are analyzed using a Poincare return map. In this approach, issues of stability and global dynamical behavior are reduced to the study of the fixed points of this map. For the one-dimensional model, a closed-form return map is obtained. For the two-dimensional model, we derive an exact return map based on the first integrals of motion. Because this map can only be constructed numerically, we also derive an analytical approximation to the return map based on perturba tion methods. The approximate return map is shown to closely predict the behavior of the exact map for small forward run ning velocities. In addition, the approximate return map can be used to quantitatively explore the coupling of vertical and lat eral dynamics and to determine the effect of the foot placement algorithm on dynamical behavior The bifurcation diagrams, which capture variations in dy namical behavior with respect to the variations in system and control parameters, are also constructed. The bifurcation dia grams exhibit a period-doubling cascade. In other words, for certain system parameter values, Raibert's control algorithm can lead to an anomalous nonuniform, but stable, hopping be havior. Using the vertical model results as a guide, we interpret the interesting dynamical behavior of this system.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Legged Robot Running on Rough Terrains Based on Norm Regulation of Spring-Loaded Inverted Pendulum Model;2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids);2023-12-12

2. Nonlinear analysis of open-chain flexible manipulator with time-dependent structure;Advances in Space Research;2022-01

3. Jumping Locomotion Strategies: From Animals to Bioinspired Robots;Applied Sciences;2020-12-01

4. Improved Performance on Moving-Mass Hopping Robots with Parallel Elasticity;2020 IEEE International Conference on Robotics and Automation (ICRA);2020-05

5. Biologically inspired jumping robots: A comprehensive review;Robotics and Autonomous Systems;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3