Affiliation:
1. Computer Graphics Group at the Delft University of Technology, the Netherlands,
2. Department of Computer Science Rensselaer Polytechnic Institute Troy, New York 12180, USA,
Abstract
In this paper we present an approach to coordinate the motions of droplets in digital microfluidic systems, a new class of lab-on-a-chip systems for biochemical analysis. A digital microfluidic system typically consists of a planar array of cells with electrodes that control the droplets. The primary challenge in using droplet-based systems is that they require the simultaneous coordination of a potentially large number of droplets on the array as the droplets move, mix, and split. In this paper we describe a general-purpose system that uses simple algorithms and yet is versatile. First, we present a semi-automated approach to generate the array layout in terms of components. Next, we discuss simple algorithms to select destination components for the droplets and a decentralized scheme for components to route the droplets on the array. These are then combined into a reconfigurable system that has been simulated in software to perform analyses such as the DNA polymerase chain reaction. The algorithms have been able to successfully coordinate hundreds of droplets simultaneously and perform one or more chemical analyses in parallel. Because it is challenging to analytically characterize the behavior of such systems, simulation methods to detect potential system instability are proposed.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献