Sampling-based robotic information gathering algorithms

Author:

Hollinger Geoffrey A.1,Sukhatme Gaurav S.2

Affiliation:

1. School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA

2. Department of Computer Science, University of Southern California, Los Angeles, CA, USA

Abstract

We propose three sampling-based motion planning algorithms for generating informative mobile robot trajectories. The goal is to find a trajectory that maximizes an information quality metric (e.g. variance reduction, information gain, or mutual information) and also falls within a pre-specified budget constraint (e.g. fuel, energy, or time). Prior algorithms have employed combinatorial optimization techniques to solve these problems, but existing techniques are typically restricted to discrete domains and often scale poorly in the size of the problem. Our proposed rapidly exploring information gathering (RIG) algorithms combine ideas from sampling-based motion planning with branch and bound techniques to achieve efficient information gathering in continuous space with motion constraints. We provide analysis of the asymptotic optimality of our algorithms, and we present several conservative pruning strategies for modular, submodular, and time-varying information objectives. We demonstrate that our proposed techniques find optimal solutions more quickly than existing combinatorial solvers, and we provide a proof-of-concept field implementation on an autonomous surface vehicle performing a wireless signal strength monitoring task in a lake.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3