A pure vision-based topological SLAM system

Author:

Lui Wen Lik Dennis1,Jarvis Ray1

Affiliation:

1. Intelligent Robotics Research Centre, Department of Electrical and Computer Systems Engineering, Monash University, Australia

Abstract

In this paper, we present a feasible solution to the problem of autonomous navigation in initially unknown environments using a pure vision-based approach. The mobile robot performs range sensing with a unique omnidirectional stereovision system, estimates its motion using visual odometry and detects loop closures via a place recognition system as it performs topological map building and localization concurrently. Owing to the importance of performing loop closing regularly, the mobile robot is equipped with an active loop closure detection and validation system that assists it to return to target loop closing locations, validates ambiguous loop closures and provides it with the ability to overturn the decision of an incorrectly committed loop closure. A refined incremental probabilistic framework for an appearance-based place recognition system is fully described and the final system is validated in multiple experiments conducted in indoor, semi-outdoor and outdoor environments. Lastly, the performance of the probabilistic framework is compared with the rank-based framework with additional experiments conducted in the semi-autonomous mode, where the mobile robot, provided with a priori information in the form of a topological map that is built in a separate occasion in an offline manner, is required to reach its target destination.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Place recognition and navigation of outdoor mobile robots based on random Forest learning with a 3D LiDAR;Journal of Intelligent & Robotic Systems;2022-04

2. A Review of Recent Mobile Robot Application Using V-SLAM in GNSS-Denied Environment;Lecture Notes in Electrical Engineering;2022

3. A Semi-Direct Monocular Visual SLAM Algorithm in Complex Environments;Journal of Intelligent & Robotic Systems;2020-12-28

4. Using Global Appearance Descriptors to Solve Topological Visual SLAM;Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction;2019

5. Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging;Journal of Intelligent & Robotic Systems;2018-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3