Affiliation:
1. Massachusetts Institute of Technology, Cambridge, MA, USA
Abstract
This paper presents a large scale dataset of vision (stereo and RGB-D), laser and proprioceptive data collected over an extended duration by a Willow Garage PR2 robot in the 10 story MIT Stata Center. As of September 2012 the dataset comprises over 2.3 TB, 38 h and 42 km (the length of a marathon). The dataset is of particular interest to robotics and computer vision researchers interested in long-term autonomy. It is expected to be useful in a variety of research areas—robotic mapping (long-term, visual, RGB-D or laser), change detection in indoor environments, human pattern analysis, long-term path planning. For ease of use the original ROS ‘bag’ log files are provided and also a derivative version combining human readable data and imagery in standard formats. Of particular importance, this dataset also includes ground-truth position estimates of the robot at every instance (to typical accuracy of 2 cm) using as-built floor-plans—which were carefully extracted using our software tools. The provision of ground-truth for such a large dataset enables more meaningful comparison between algorithms than has previously been possible.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献