Transendoscopic flexible parallel continuum robotic mechanism for bimanual endoscopic submucosal dissection

Author:

Gao Huxin1234,Yang Xiaoxiao5,Xiao Xiao6,Zhu Xiaolong6,Zhang Tao23,Hou Cheng7,Liu Huicong7,Meng Max Q.-H.26,Sun Lining7,Zuo Xiuli5,Li Yanqing5,Ren Hongliang1234ORCID

Affiliation:

1. The Department of Electronic Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China

2. The Department of Biomedical Engineering, National University of Singapore, Singapore

3. Shun Hing Institute of Advanced Engineering (SHIAE), The Chinese University of Hong Kong (CUHK), Hong Kong, China

4. NUS (Suzhou) Research Institute (NUSRI), Suzhou, China

5. The Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China

6. The Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China

7. School of Mechanical and Electric Engineering, Soochow University, Suzhou, China

Abstract

In endoscopic submucosal dissection (ESD), the gastrointestinal (GI) tract warrants the surgical instruments to navigate through a long, narrow and tortuous endoscope. This poses a great challenge in developing ESD instruments with small dimensions, flexibility, and high distal dexterity. In this work, we propose the first Transendoscopic Flexible Parallel Continuum Robotic mechanism to develop a miniature dexterous flexible-stiff-balanced Wrist (FPCW). Besides, it can steer multifunctional instruments of diameters 2.5 mm to 3.5 mm, including the electrosurgical knife, injection needle, and forceps. Our FPCW instruments are adaptable to commercially available dual-channel endoscopes (diameter: <12 mm, channel width: 2.8 mm and around 3.8 mm). Furthermore, we develop a surgical telerobotic system, called DREAMS (Dual-arm Robotic Endoscopic Assistant for Minimally Invasive Surgery), by using our smallest FPCW instruments for bimanual ESD procedures. First, we conduct a series of experiments to determine the FPCW’s design and kinematics parameters and to verify the mechanical properties of the FPCW instruments’ prototypes, including workspace, stiffness, strength, and teleoperation accuracy. Second, we validate the functionality of the FPCW instruments through ex-vivo tests by performing ESD steps on porcine stomachs. Finally, we perform an invivo test on a live porcine model and showcase that our developed DREAMS can be teleoperated intuitively to perform bimanual ESD efficiently with an average dissection speed of 108.95 mm2/min at the greater curvature in gastric body, which demonstrates that our DREAMS has satisfactory maneuverability as well as accuracy and is more competitive than counterpart robotic systems.

Funder

National Science and Technology Major Project

Hong Kong Research Grants Council (RGC) General Research Fund

Regional Joint Fund Project of the Basic and Applied Research Fund of Guangdong Province

Hong Kong Research Grants Council (RGC) Collaborative Research Funds

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3