Multimodal interaction-aware motion prediction for autonomous street crossing

Author:

Radwan Noha1ORCID,Burgard Wolfram1,Valada Abhinav1ORCID

Affiliation:

1. Department of Computer Science, University of Freiburg, Germany

Abstract

For mobile robots navigating on sidewalks, the ability to safely cross street intersections is essential. Most existing approaches rely on the recognition of the traffic light signal to make an informed crossing decision. Although these approaches have been crucial enablers for urban navigation, the capabilities of robots employing such approaches are still limited to navigating only on streets that contain signalized intersections. In this article, we address this challenge and propose a multimodal convolutional neural network framework to predict the safety of a street intersection for crossing. Our architecture consists of two subnetworks: an interaction-aware trajectory estimation stream ( interaction-aware temporal convolutional neural network (IA-TCNN)), that predicts the future states of all observed traffic participants in the scene; and a traffic light recognition stream AtteNet. Our IA-TCNN utilizes dilated causal convolutions to model the behavior of all the observable dynamic agents in the scene without explicitly assigning priorities to the interactions among them, whereas AtteNet utilizes squeeze-excitation blocks to learn a content-aware mechanism for selecting the relevant features from the data, thereby improving the noise robustness. Learned representations from the traffic light recognition stream are fused with the estimated trajectories from the motion prediction stream to learn the crossing decision. Incorporating the uncertainty information from both modules enables our architecture to learn a likelihood function that is robust to noise and mispredictions from either subnetworks. Simultaneously, by learning to estimate motion trajectories of the surrounding traffic participants and incorporating knowledge of the traffic light signal, our network learns a robust crossing procedure that is invariant to the type of street intersection. Furthermore, we extend our previously introduced Freiburg Street Crossing dataset with sequences captured at multiple intersections of varying types, demonstrating complex interactions among the traffic participants as well as various lighting and weather conditions. We perform comprehensive experimental evaluations on public datasets as well as our Freiburg Street Crossing dataset, which demonstrate that our network achieves state-of-the-art performance for each of the subtasks, as well as for the crossing safety prediction. Moreover, we deploy the proposed architectural framework on a robotic platform and conduct real-world experiments that demonstrate the suitability of the approach for real-time deployment and robustness to various environments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is It Safe to Cross? Interpretable Risk Assessment with GPT-4V for Safety-Aware Street Crossing;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. The application of CNN in Smart city management and supervision under the background of Smart city;Measurement: Sensors;2024-06

3. Intersection Access Decision Making of Robot Guide Dog via a Novel Deformable Attention Transformer-Based Detection Algorithm;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

4. Delivering the Future: Understanding User Perceptions of Delivery Robots;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

5. Enhancing Joint Behavior Modeling with Route Choice Using Adversarial Inverse Reinforcement Learning;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3