The split-belt rimless wheel

Author:

Butterfield Julia K1ORCID,Simha Surabhi N2,Donelan J Maxwell2,Collins Steven H1

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

2. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

Abstract

Split-belt treadmill walking, in which the two belts move at different speeds, reveals a mechanism through which energy can be extracted from the environment. When a person walks with positive step length asymmetry on a split-belt treadmill, the treadmill can perform net positive work on the person. Here we use a split-belt rimless wheel model to explore how people could take advantage of the treadmill. We show that a split-belt rimless wheel can passively walk steadily by capturing energy from the treadmill to overcome collision losses, whereas it loses energy on each step with no way to recover the losses when walking on tied belts. Our simulated split-belt rimless wheel can walk steadily for a variety of leg angle and belt speed combinations, tolerating both speed disturbances and ground height variability. The wheel can even capture enough energy to walk uphill. We also built a physical split-belt rimless wheel robot and demonstrated that it can walk continuously without additional energy input. In comparing the wheel solutions to human split-belt gait, we found that humans do not maximize positive work performed by the treadmill. Other aspects of walking, such as costs associated with swing, balance, and free vertical moments, likely limit people’s ability to benefit from the treadmill. This study uses a simple walking model to characterize the mechanics and energetics of split-belt walking, demonstrating that energy capture through intermittent contact with two belts is possible and providing a simple model framework for understanding human adaptation during split-belt walking.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3