Affiliation:
1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
Abstract
The construction of feedback control laws for underactuated nonlinear robotic systems with input saturation limits is crucial for dynamic robotic tasks such as walking, running, or flying. Existing techniques for feedback control design are either restricted to linear systems, rely on discretizations of the state space, or require solving a nonconvex optimization problem that requires feasible initialization. This paper presents a method for designing feedback controllers for polynomial systems that maximize the size of the time-limited backwards reachable set (BRS). In contrast to traditional approaches based on Lyapunov’s criteria for stability, we rely on the notion of occupation measures to pose this problem as an infinite-dimensional linear program which can then be approximated in finite dimension via semidefinite programs (SDPs). The solution to each SDP yields a polynomial control policy and an outer approximation of the largest achievable BRS which is well suited for use in a trajectory library or feedback motion planning algorithm. We demonstrate the efficacy and scalability of our approach on six nonlinear systems. Comparisons to an infinite-horizon linear quadratic regulator approach and an approach relying on Lyapunov’s criteria for stability are also included in order to illustrate the improved performance of the presented technique.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献