Learning dexterity from human hand motion in internet videos

Author:

Shaw Kenneth1ORCID,Bahl Shikhar1,Sivakumar Aravind1,Kannan Aditya1ORCID,Pathak Deepak1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

To build general robotic agents that can operate in many environments, it is often useful for robots to collect experience in the real world. However, unguided experience collection is often not feasible due to safety, time, and hardware restrictions. We thus propose leveraging the next best thing as real world experience: videos of humans using their hands. To utilize these videos, we develop a method that retargets any 1st person or 3rd person video of human hands and arms into the robot hand and arm trajectories. While retargeting is a difficult problem, our key insight is to rely on only internet human hand video to train it. We use this method to present results in two areas: First, we build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand. The robot observes the human operator via a single RGB camera and imitates their actions in real-time. This enables the robot to collect real-world experience safely using supervision. See these results at https://robotic-telekinesis.github.io . Second, we retarget in-the-wild human internet video into task-conditioned pseudo-robot trajectories to use as artificial robot experience. This learning algorithm leverages action priors from human hand actions, visual features from the images, and physical priors from dynamical systems to pretrain typical human behavior for a particular robot task. We show that by leveraging internet human hand experience, we need fewer robot demonstrations compared to many other methods. See these results at https://video-dex.github.io

Funder

Samsung GRO

ONR

NSF

NSF GRFP

GoodAI Research Award

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3