MAgro dataset: A dataset for simultaneous localization and mapping in agricultural environments

Author:

Marzoa Tanco Mercedes1ORCID,Trinidad Barnech Guillermo1ORCID,Andrade Federico1,Baliosian Javier1ORCID,LLofriu Martin1ORCID,Di Martino JM2,Tejera Gonzalo1

Affiliation:

1. Universidad de la República, Montevideo, Uruguay

2. Duke University, Durham, NC, USA

Abstract

The agricultural industry is being transformed, thanks to recent innovations in computer vision and deep learning. However, the lack of specific datasets collected in natural agricultural environments is, arguably, the main bottleneck for novel discoveries and benchmarking. The present work provides a novel dataset, Magro, and a framework to expand data collection. We present the first version of the Magro Dataset V1.0, consisting of nine ROS bags (and the corresponding raw data) containing data collected in apple and pear crops. Data were gathered, repeating a fixed trajectory on different days under different illumination and weather conditions. To support the evaluation of loop closure algorithms, the trajectories are designed to have loop closures, revisiting some places from different viewpoints. We use a Clearpath’s Jackal robot equipped with stereo cameras pointing to the front and left side, a 3D LIDAR, three inertial measurement units (IMU), and wheel encoders. Additionally, we provide calibrated RTK GPS data that can be used as ground truth. Our dataset is openly available, and it will be updated to have more data and variability. Finally, we tested two existing state-of-the-art algorithms for vision and point cloud-based localization and mapping on our novel dataset to validate the dataset’s usability.

Funder

Agencia Nacional de Investigación e Innovación

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3