Enabling impedance-based physical human–multi–robot collaboration: Experiments with four torque-controlled manipulators

Author:

Dehio Niels123ORCID,Smith Joshua3,Wigand Dennis L.4,Mohammadi Pouya2,Mistry Michael3,Steil Jochen J.2

Affiliation:

1. Institute for Anthropomatics and Robotics - Intelligent Process Automation and Robotics Lab, Karlsruhe Institute of Technology, Germany

2. Institute of Robotics and Process Control, Technical University of Braunschweig, Germany

3. Institute for Perception, Action and Behaviour, University of Edinburgh, United Kingdom

4. Research Institute for Cognition and Robotics, Bielefeld University

Abstract

Robotics research into multi-robot systems so far has concentrated on implementing intelligent swarm behavior and contact-less human interaction. Studies of haptic or physical human-robot interaction, by contrast, have primarily focused on the assistance offered by a single robot. Consequently, our understanding of the physical interaction and the implicit communication through contact forces between a human and a team of multiple collaborative robots is limited. We here introduce the term Physical Human Multi-Robot Collaboration (PHMRC) to describe this more complex situation, which we consider highly relevant in future service robotics. The scenario discussed in this article covers multiple manipulators in close proximity and coupled through physical contacts. We represent this set of robots as fingers of an up-scaled agile robot hand. This perspective enables us to employ model-based grasping theory to deal with multi-contact situations. Our torque-control approach integrates dexterous multi-manipulator grasping skills, optimization of contact forces, compensation of object dynamics, and advanced impedance regulation into a coherent compliant control scheme. For this to achieve, we contribute fundamental theoretical improvements. Finally, experiments with up to four collaborative KUKA LWR IV+ manipulators performed both in simulation and real world validate the model-based control approach. As a side effect, we notice that our multi-manipulator control framework applies identically to multi-legged systems, and we execute it also on the quadruped ANYmal subject to non-coplanar contacts and human interaction.

Funder

H2020-Cogimon

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3