Continuous latent state preintegration for inertial-aided systems

Author:

Le Gentil Cedric1ORCID,Vidal-Calleja Teresa1ORCID

Affiliation:

1. UTS Robotics Institute, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia

Abstract

Traditionally, the pose and velocity prediction of a system at time t2 given inertial measurements from a 6-DoF IMU depends on the knowledge of the system’s state at time t1. It involves a series of integration and double integration that can be computationally expensive if performed regularly, in particular in the context of inertial-aided optimisation-based state estimation. The concept of preintegration consists of creating pseudo-measurements that are independent of the system’s initial conditions (pose and velocity at t1) in order to predict the system’s state at t2. These pseudo-measurements, so-called preintegrated measurements, were originally computed numerically using the integration rectangle rule. This article presents a novel method to perform continuous preintegration using Gaussian processes (GPs) to model the system’s dynamics focusing on high accuracy. It represents the preintegrated measurement’s derivatives in a continuous latent state that is learnt/optimised according to asynchronous IMU gyroscope and accelerometer measurements. The GP models allow for analytical integration and double integration of the latent state to generate accurate preintegrated measurements called unified Gaussian preintegrated measurements (UGPMs). We show through extensive quantitative experiments that the proposed UGPMs outperform the standard preintegration method by an order of magnitude. Additionally, we demonstrate that the UGPMs can be integrated into off-the-shelf multi-modal estimation frameworks with ease based on lidar-inertial, RGBD-inertial, and visual-inertial real-world experiments.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3