Programing by Demonstration: Coping with Suboptimal Teaching Actions

Author:

Chen Jason1,Zelinsky Alex1

Affiliation:

1. Department of Systems Engineering Research School of Information Science and Engineering The Australian National University Canberra, Australia

Abstract

The difficulty associated with programing existing robots is one of the main impediments to them finding application in domestic environments such as the home. A promising method for simplifying robot programing is Programing by Demonstration (PbD). Here, an end user can provide a demonstration of the task to be programed, with a PbD “interface” interpreting the demonstration in order to determine low-level control details for the robot. A key aspect of the interpretation process is to make it robust to the noise typically included in a demonstration by the human. In this paper we present a method to help identify and eliminate any noise present in the demonstration. Our method involves two steps. The first step uses the demonstration to build up a partial knowledge of the geometry present in the task. Statistical regression analysis is used on demonstrated trajectories to determine equations describing curved surfaces in configuration space. The second step in our method uses the geometric information obtained in the first step to determine if there are more optimal paths than those demonstrated for completing the task. If there are, our method proposes these as the appropriate control commands for the robot. We show the validity of our approach by presenting successful experiments on a realistic household-type task—changing rolls on a paper roll holder.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of demonstration learning;Robotics and Autonomous Systems;2024-12

2. User Interface Interventions for Improving Robot Learning from Demonstration;International Conference on Human-Agent Interaction;2023-12-04

3. Learning cooperative dynamic manipulation skills from human demonstration videos;Mechatronics;2022-08

4. One-Shot Imitation Learning on Heterogeneous Associated Tasks via Conjugate Task Graph;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18

5. What Makes a Good Demonstration for Robot Learning Generalization?;Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction;2021-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3