New perspective on sampling-based motion planning via random geometric graphs

Author:

Solovey Kiril1,Salzman Oren2,Halperin Dan1

Affiliation:

1. Blavatnik School of Computer Science, Tel Aviv University, Israel

2. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Roadmaps constructed by many sampling-based motion planners coincide, in the absence of obstacles, with standard models of random geometric graphs (RGGs). Those models have been studied for several decades and by now a rich body of literature exists analyzing various properties and types of RGGs. In their seminal work on optimal motion planning, Karaman and Frazzoli conjectured that a sampling-based planner has a certain property if the underlying RGG has this property as well. In this paper, we settle this conjecture and leverage it for the development of a general framework for the analysis of sampling-based planners. Our framework, which we call localization–tessellation, allows for easy transfer of arguments on RGGs from the free unit hypercube to spaces punctured by obstacles, which are geometrically and topologically much more complex. We demonstrate its power by providing alternative and (arguably) simple proofs for probabilistic completeness and asymptotic (near-)optimality of probabilistic roadmaps (PRMs) in Euclidean spaces. Furthermore, we introduce three variants of PRMs, analyze them using our framework, and discuss the implications of the analysis.

Funder

Toyota Motor Engineering & Manufacturing

German-Israeli Foundation for Scientific Research and Development

Clore Israel Foundation

Office of Naval Research

Hermann Minkowski-Minerva Center for Geometry at Tel Aviv University

Israel Science Foundation

National Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3