A Finite Element Dynamic Analysis of Flexible Manipulators

Author:

Jonker Ben1

Affiliation:

1. Department of Mechanical Engineering Twente University of Technology 7500 AE Enschede, The Netherlands

Abstract

A finite element - based method is presented for analyzing the dynamic behavior of flexible manipulators, including the effects of the manipulator's control system. The method involves a nonlinear finite-element formulation in which both links and joints are considered as specific finite elements. The governing equations of motion are formulated in terms of two sets of coordinates, namely generalized coordinates of the manipulator with rigid links and deformation mode coordinates that characterize deformation of the links. The method also permits generation of locally linearized models about a nominal trajectory. The numerical performance of the presented finite element method is demonstrated by analyzing the closed-loop behav ior of a flexible three-degree-of-freedom manipulator in which the position of the end effector is to be sensed. On the basis of the linearized system description, controllability is discussed in terms of the modal representations of the system. Uncontrollable manipulator configurations have been indi cated for bending vibrations of the out-of-plane motion of the manipulator. Fast and precise closed-loop tip position control has been obtained for the in-plane motion with a bandwidth that is three times the bandwidth achieved with actuator joint feedback. However, no significant increase in the bandwidth has been obtained for the out-of-plane motion. The improve ment for the latter motion is strongly limited by the nonmini mum phase behavior.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3