Trajectory optimization on manifolds with applications to quadrotor systems

Author:

Watterson Michael1ORCID,Liu Sikang1,Sun Ke1,Smith Trey2,Kumar Vijay1

Affiliation:

1. University of Pennsylvania, Philadelphia, PA, USA

2. NASA Ames Research Center, Moffett Field, CA, USA

Abstract

Manifolds are used in almost all robotics applications even if they are not modeled explicitly. We propose a differential geometric approach for optimizing trajectories on a Riemannian manifold with obstacles. The optimization problem depends on a metric and collision function specific to a manifold. We then propose our safe corridor on manifolds (SCM) method of computationally optimizing trajectories for robotics applications via a constrained optimization problem. Our method does not need equality constraints, which eliminates the need to project back to a feasible manifold during optimization. We then demonstrate how this algorithm works on an example problem on [Formula: see text] and a perception-aware planning example for visual–inertially guided robots navigating in three dimensions. Formulating field of view constraints naturally results in modeling with the manifold [Formula: see text], which cannot be modeled as a Lie group. We also demonstrate the example of planning trajectories on [Formula: see text] for a formation of quadrotors within an obstacle filled environment.

Funder

Ames Research Center

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3