Theoretical and experimental investigation of variable contact forces on the rollers of a mecanum wheeled mobile robot

Author:

Tezel Can1,Bayar Gokhan1ORCID

Affiliation:

1. Mechanical Engineering Department, Zonguldak Bulent Ecevit University, Zonguldak, Turkey

Abstract

The modeling structures of rollers, mecanum wheels, and mecanum wheeled mobile robots presented in the literature use single contact force assumption. This assumption may give good results in a simulation environment; however, it is not strong enough to reflect reality. To make an improvement, a new aspect of mecanum wheel model is proposed in this study. The model takes the variable roller contact forces into account and investigates their effects on the performance of motion of a mecanum wheeled mobile robot. It uses all points on each roller’s curved shape so that the slippage phenomena is also taken into consideration which makes it possible to get less position estimation errors in real-time operations. The modeling structure introduced aims to reflect reality both in simulation and real applications. A simulation environment is developed for this study. To make verification, an experimental setup including a four-mecanum-wheeled mobile robot, its mechanical and electrical hardware and software infrastructures, and a ground-truth system is designed and constructed. A Robot Operating System (ROS) based control system is created and integrated into the experimental system. Different types of reference trajectories including straight-line, square-shaped, Z-shaped, and wave(S)-shaped are used to test the performance of the model proposed in both simulation and experimental studies. The tests are also conducted using the model that involves single contact force assumption to make comparisons. The details of the variable contact forces model proposed, simulation environment developed, experimental setup built, simulation and experimental studies, their results, and comparisons are given in this paper.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory Tracking Control for Four Mecanum Wheels Omnidirectional Mobile Robots Based on Active Disturbances Rejecter Control;2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC);2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3