Efficiently combining task and motion planning using geometric constraints

Author:

Lagriffoul Fabien1,Dimitrov Dimitar1,Bidot Julien1,Saffiotti Alessandro1,Karlsson Lars1

Affiliation:

1. AASS Cognitive Robotic Systems Lab, Örebro University, Örebro, Sweden

Abstract

We propose a constraint-based approach to address a class of problems encountered in combined task and motion planning (CTAMP), which we call kinematically constrained problems. CTAMP is a hybrid planning process in which task planning and geometric reasoning are interleaved. During this process, symbolic action sequences generated by a task planner are geometrically evaluated. This geometric evaluation is a search problem per se, which we refer to as geometric backtrack search. In kinematically constrained problems, a significant computational effort is spent on geometric backtrack search, which impairs search at the task level. At the basis of our approach to address this problem, is the introduction of an intermediate layer between task planning and geometric reasoning. A set of constraints is automatically generated from the symbolic action sequences to evaluate, and combined with a set of constraints derived from the kinematic model of the robot. The resulting constraint network is then used to prune the search space during geometric backtrack search. We present experimental evidence that our approach significantly reduces the complexity of geometric backtrack search on various types of problem.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text2Motion: from natural language instructions to feasible plans;Autonomous Robots;2023-11-14

2. Multi-robot geometric task-and-motion planning for collaborative manipulation tasks;Autonomous Robots;2023-10-30

3. Counterexample-Guided Repair for Symbolic-Geometric Action Abstractions;IEEE Transactions on Robotics;2023-10

4. Spatial Reasoning via Deep Vision Models for Robotic Sequential Manipulation;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. An Overview of Path Planning for Autonomous Robots in Smart Manufacturing;2023 28th International Conference on Automation and Computing (ICAC);2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3