Affiliation:
1. Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA
Abstract
This paper presents a robotic manipulation system capable of autonomously positioning a multi-segment soft fluidic elastomer robot in three dimensions. Specifically, we present an extremely soft robotic manipulator morphology that is composed entirely from low durometer elastomer, powered by pressurized air, and designed to be both modular and durable. To understand the deformation of a single arm segment, we develop and experimentally validate a static deformation model. Then, to kinematically model the multi-segment manipulator, we use a piece-wise constant curvature assumption consistent with more traditional continuum manipulators. In addition, we define a complete fabrication process for this new manipulator and use this process to make multiple functional prototypes. In order to power the robot’s spatial actuation, a high capacity fluidic drive cylinder array is implemented, providing continuously variable, closed-circuit gas delivery. Next, using real-time data from a vision system, we develop a processing and control algorithm that generates realizable kinematic curvature trajectories and controls the manipulator’s configuration along these trajectories. Lastly, we experimentally demonstrate new capabilities offered by this soft fluidic elastomer manipulation system such as entering and advancing through confined three-dimensional environments as well as conforming to goal shape-configurations within a sagittal plane under closed-loop control.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
239 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献