PiP-X: Online feedback motion planning/replanning in dynamic environments using invariant funnels

Author:

M Jaffar Mohamed Khalid1ORCID,Otte Michael1

Affiliation:

1. Department of Aerospace Engineering, University of Maryland, College Park, MD, USA

Abstract

Computing kinodynamically feasible motion plans and repairing them on-the-fly as the environment changes is a challenging, yet relevant problem in robot navigation. We propose an online single-query sampling-based motion re-planning algorithm using finite-time invariant sets, commonly referred to as “ funnels”. We combine concepts from nonlinear systems analysis, sampling-based techniques, and graph-search methods to create a single framework that enables feedback motion re-planning for any general nonlinear dynamical system in dynamic workspaces. A volumetric network of funnels is constructed in the configuration space using sampling-based methods and invariant set theory; and an optimal sequencing of funnels from robot configuration to a desired goal region is then determined by computing the shortest-path subgraph (tree) in the network. Analyzing and formally quantifying the stability of trajectories using Lyapunov level-sets ensures kinodynamic feasibility and guaranteed set-invariance of the solution paths. Though not required, our method is capable of using a pre-computed library of motion primitives to speedup online computation of controllable motion plans that are volumetric in nature. We introduce a novel directed-graph data structure to represent the funnel-network and its inter-sequencibility; helping us leverage discrete graph-based incremental search to quickly rewire feasible and controllable motion plans on-the-fly in response to changes in the environment. We validate our approach on a simulated cart-pole, car-like robot, and 6DOF quadrotor platform in a variety of scenarios within a maze and a random forest environment. Using Monte Carlo methods, we evaluate the performance in terms of algorithm success, length of traversed trajectory, and runtime.

Funder

Naval Air Warfare Center, Aircraft Division

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3