Learning the semantics of object–action relations by observation

Author:

Aksoy Eren Erdal1,Abramov Alexey1,Dörr Johannes1,Ning Kejun1,Dellen Babette12,Wörgötter Florentin1

Affiliation:

1. Bernstein Center for Computational Neuroscience, University of Göttingen, III. Physikalisches Institut, Göttingen, Germany

2. Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain

Abstract

Recognizing manipulations performed by a human and the transfer and execution of this by a robot is a difficult problem. We address this in the current study by introducing a novel representation of the relations between objects at decisive time points during a manipulation. Thereby, we encode the essential changes in a visual scenery in a condensed way such that a robot can recognize and learn a manipulation without prior object knowledge. To achieve this we continuously track image segments in the video and construct a dynamic graph sequence. Topological transitions of those graphs occur whenever a spatial relation between some segments has changed in a discontinuous way and these moments are stored in a transition matrix called the semantic event chain (SEC). We demonstrate that these time points are highly descriptive for distinguishing between different manipulations. Employing simple sub-string search algorithms, SECs can be compared and type-similar manipulations can be recognized with high confidence. As the approach is generic, statistical learning can be used to find the archetypal SEC of a given manipulation class. The performance of the algorithm is demonstrated on a set of real videos showing hands manipulating various objects and performing different actions. In experiments with a robotic arm, we show that the SEC can be learned by observing human manipulations, transferred to a new scenario, and then reproduced by the machine.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3