Online self-calibration for robotic systems

Author:

Maye Jérôme1,Sommer Hannes1,Agamennoni Gabriel1,Siegwart Roland1,Furgale Paul1

Affiliation:

1. Autonomous Systems Lab, ETH Zurich, Switzerland

Abstract

We present a generic algorithm for self-calibration of robotic systems that utilizes two key innovations. First, it uses an information-theoretic measure to automatically identify and store novel measurement sequences. This keeps the computation tractable by discarding redundant information and allows the system to build a sparse but complete calibration dataset from data collected at different times. Second, as the full observability of the calibration parameters may not be guaranteed for an arbitrary measurement sequence, the algorithm detects and locks unobservable directions in parameter space using a combination of rank-revealing QR and singular value decompositions of the Fisher information matrix. The result is an algorithm that listens to an incoming sensor stream, builds a minimal set of data for estimating the calibration parameters, and updates parameters as they become observable, leaving the others locked at their initial guess. We validate our approach through an extensive set of simulated and real-world experiments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wheel odometry model calibration with neural network-based weighting;Engineering Applications of Artificial Intelligence;2024-08

2. Robot–Camera Calibration in Tightly Constrained Environment Using Interactive Perception;IEEE Transactions on Robotics;2023-12

3. Robot self‐calibration using actuated 3D sensors;Journal of Field Robotics;2023-11-14

4. Observability-Aware Active Extrinsic Calibration of Multiple Sensors;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

5. A Mobile Hybrid Robot and Its Accuracy Issue in Machining of Large-Scale Structures;IEEE/ASME Transactions on Mechatronics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3