Uncertainty and Compliance of Robot Manipulators with Applications to Task Feasibility

Author:

Pai Dinesh K.1,Leu M.C.2

Affiliation:

1. Department of Computer Science Cornell University Ithaca, New York 14853

2. Department of Mechanical and Industrial Engineering New Jersey Institute of Technology Newark, New Jersey 07102

Abstract

The uncertainty and compliance of a robot manipulator used to perform a task are considered. A formula is derived for the efficient computation of a tight bound on the uncertainty of the end effector, given the uncertainty in the kinematic pa rameters of the robot. It is shown that the total uncertainty is the Minkowski difference of the manipulator uncertainty and the task position uncertainty. Simulations are performed in which the results are used to determine configurations of a robot for which the total uncertainty is within a specified tolerance.The suitability of the compliance of a manipulator for performing a planar peg-in-hole type assembly task is also studied. Manipulators are modeled as having rigid links and compliant joints, following experimental results. It is shown that given any symmetric positive semidefinite compliance, a robot manipulator of the above type can be constructed that will realize this compliance at some point in its work space. A new condition on the stiffness is proposed for preventing jamming. If the peg is supported by the end effector of a robot, we can determine configurations of the robot at which jam ming can be avoided. Simulations are performed to compute the no-jam configurations of a manipulator.The results developed here have direct application to sev eral areas of robotics: determining whether a robotic task is feasible in the presence of uncertainty and joint compliance, choosing work space locations for a robotic task, and the design and selection of robot manipulators.1. This is called two- point contact in Whitney (1982).2. That is, errors resulting from both the end-effector and task position uncertainties.3. The symbol ( )Tdenotes the transpose.4. The half-size of a box is half the length of the box in a specified coordinate direction.5. Also called the set-sum.6. The effective compliance refers to the compliance at the peg tip resulting from the compliance of the robot or some other support.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC);Stochastic Optimization Methods;2024

2. Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC);Stochastic Optimization Methods;2015

3. Stochastic Optimal Open-Loop Feedback Control;Stochastic Optimization Methods;2015

4. Optimal Control Under Stochastic Uncertainty;Stochastic Optimization Methods;2015

5. Stochastic Optimization Methods;Stochastic Optimization Methods;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3