Sensor-based Planning for a Rod-shaped Robot in Three Dimensions: Piecewise Retracts of R3 × S2

Author:

Lee Ji Yeong1,Choset Howie2

Affiliation:

1. Korea Institute of Science and Technology (KIST), Seoul, Korea,

2. Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

We present a new roadmap for a rod-shaped robot operating in a three-dimensional workspace, whose configuration space is diffeomorphic to R3 × S2. This roadmap is called the rod hierarchical generalized Voronoi graph (rod-HGVG) and can be used to find a path between any two points in an unknown configuration space using only the sensor data. More importantly, the rod-HGVG serves as a basis for an algorithm to explore an unknown configuration space without explicitly constructing it. Once the rod-HGVG is constructed, the planner can use it to plan a path between any two configurations. One of the challenges in defining the roadmap revolves around a homotopy theory result, which asserts that there cannot be a one-dimensional deformation retract of a non-contractible space with dimension greater than two. Instead, we define an exact cellular decomposition on the free configuration space and a deformation retract in each cell (each cell is contractible). Next, we “connect” the deformation retracts of each of the cells using a roadmap of the workspace. We call this roadmap a piecewise retract because it comprises many deformation retracts. Exploiting the fact that the rod-HGVG is defined in terms of workspace distance measurements, we prescribe an incremental procedure to construct the rod-HGVG that uses the distance information that can be obtained from conventional range sensors.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensor-based exploration for planar two-identical-link robots;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-12-03

2. Sensor-based path planning: The two-identical-link hierarchical generalized Voronoi graph;International Journal of Precision Engineering and Manufacturing;2015-07

3. A Framework for Unknown Environment Manipulator Motion Planning via Model Based Realtime Rehearsal;Advances in Intelligent Systems and Computing;2013

4. A family of skeletons for motion planning and geometric reasoning applications;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2011-10-12

5. Simple Wriggling is Hard Unless You Are a Fat Hippo;Theory of Computing Systems;2011-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3