ElasticFusion: Real-time dense SLAM and light source estimation

Author:

Whelan Thomas1,Salas-Moreno Renato F2,Glocker Ben2,Davison Andrew J1,Leutenegger Stefan1

Affiliation:

1. Dyson Robotics Laboratory at Imperial College, Imperial College London, UK

2. Department of Computing, Imperial College London, UK

Abstract

We present a novel approach to real-time dense visual simultaneous localisation and mapping. Our system is capable of capturing comprehensive dense globally consistent surfel-based maps of room scale environments and beyond explored using an RGB-D camera in an incremental online fashion, without pose graph optimization or any post-processing steps. This is accomplished by using dense frame-to-model camera tracking and windowed surfel-based fusion coupled with frequent model refinement through non-rigid surface deformations. Our approach applies local model-to-model surface loop closure optimizations as often as possible to stay close to the mode of the map distribution, while utilizing global loop closure to recover from arbitrary drift and maintain global consistency. In the spirit of improving map quality as well as tracking accuracy and robustness, we furthermore explore a novel approach to real-time discrete light source detection. This technique is capable of detecting numerous light sources in indoor environments in real-time as a user handheld camera explores the scene. Absolutely no prior information about the scene or number of light sources is required. By making a small set of simple assumptions about the appearance properties of the scene our method can incrementally estimate both the quantity and location of multiple light sources in the environment in an online fashion. Our results demonstrate that our technique functions well in many different environments and lighting configurations. We show that this enables (a) more realistic augmented reality rendering; (b) a richer understanding of the scene beyond pure geometry and; (c) more accurate and robust photometric tracking.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 462 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3