A corroborative approach to verification and validation of human–robot teams

Author:

Webster Matt1,Western David2,Araiza-Illan Dejanira2,Dixon Clare1,Eder Kerstin23,Fisher Michael1,Pipe Anthony G34

Affiliation:

1. Department of Computer Science, University of Liverpool, UK

2. Department of Computer Science, University of Bristol, UK

3. Bristol Robotics Laboratory, UK

4. Faculty of Environment and Technology, University of the West of England, UK

Abstract

We present an approach for the verification and validation (V&V) of robot assistants in the context of human–robot interactions, to demonstrate their trustworthiness through corroborative evidence of their safety and functional correctness. Key challenges include the complex and unpredictable nature of the real world in which assistant and service robots operate, the limitations on available V&V techniques when used individually, and the consequent lack of confidence in the V&V results. Our approach, called corroborative V&V, addresses these challenges by combining several different V&V techniques; in this paper we use formal verification (model checking), simulation-based testing, and user validation in experiments with a real robot. This combination of approaches allows V&V of the human–robot interaction task at different levels of modeling detail and thoroughness of exploration, thus overcoming the individual limitations of each technique. We demonstrate our approach through a handover task, the most critical part of a complex cooperative manufacturing scenario, for which we propose safety and liveness requirements to verify and validate. Should the resulting V&V evidence present discrepancies, an iterative process between the different V&V techniques takes place until corroboration between the V&V techniques is gained from refining and improving the assets (i.e., system and requirement models) to represent the human–robot interaction task in a more truthful manner. Therefore, corroborative V&V affords a systematic approach to “meta-V&V,” in which different V&V techniques can be used to corroborate and check one another, increasing the level of certainty in the results of V&V.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3