Topological trajectory classification with filtrations of simplicial complexes and persistent homology

Author:

Pokorny Florian T.1,Hawasly Majd2,Ramamoorthy Subramanian2

Affiliation:

1. Centre for Autonomous Systems, CAS/CVAP, KTH Royal Institute of Technology, Sweden

2. IPAB, School of Informatics, University of Edinburgh, UK

Abstract

In this work, we present a sampling-based approach to trajectory classification which enables automated high-level reasoning about topological classes of trajectories. Our approach is applicable to general configuration spaces and relies only on the availability of collision free samples. Unlike previous sampling-based approaches in robotics which use graphs to capture information about the path-connectedness of a configuration space, we construct a multiscale approximation of neighborhoods of the collision free configurations based on filtrations of simplicial complexes. Our approach thereby extracts additional homological information which is essential for a topological trajectory classification. We propose a multiscale classification algorithm for trajectories in configuration spaces of arbitrary dimension and for sets of trajectories starting and ending in two fixed points. Using a cone construction, we then generalize this approach to classify sets of trajectories even when trajectory start and end points are allowed to vary in path-connected subsets. We furthermore show how an augmented filtration of simplicial complexes based on an arbitrary function on the configuration space, such as a costmap, can be defined to incorporate additional constraints. We present an evaluation of our approach in 2-, 3-, 4- and 6-dimensional configuration spaces in simulation and in real-world experiments using a Baxter robot and motion capture data.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of individual activity level heterogeneity on disease spreading in higher-order networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01

2. Investigation of Indian stock markets using topological data analysis and geometry-inspired network measures;Physica A: Statistical Mechanics and its Applications;2024-06

3. k-means clustering for persistent homology;Advances in Data Analysis and Classification;2024-01-31

4. Persistent Homology-Based Classification of Chaotic Multi-variate Time Series: Application to Electroencephalograms;SN Computer Science;2023-12-18

5. Multilevel motion planning: A fiber bundle formulation;The International Journal of Robotics Research;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3