Affiliation:
1. Department of Computer Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.,
Abstract
The integration of visual and inertial sensors for human motion tracking has attracted significant attention recently, due to its robust performance and wide potential application. This paper introduces a real-time hybrid solution to articulated 3D arm motion tracking for home-based rehabilitation by combining visual and inertial sensors. Data fusion is a key issue in this hybrid system and two different data fusion methods are proposed. The first is a deterministic method based on arm structure and geometry information, which is suitable for simple rehabilitation motions. The second is a probabilistic method based on an Extended Kalman Filter (EKF) in which data from two sensors is fused in a predict-correct manner in order to deal with sensor noise and model inaccuracy. Experimental results are presented and compared with commercial marker-based systems, CODA and Qualysis. They show good performance for the proposed solution.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献