A Unified Approach to Motion Control of Mobile Manipulators

Author:

Seraji Homayoun1

Affiliation:

1. Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91109, USA

Abstract

This paper presents a simple on-line approach for motion control of mobile manipulators comprising a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots such as rover-mounted manipulators and holonomic mobile robots such as tracked robots and compound manipulators. For wheeled mobile robots, the nonholonomic base constraints are incorporated directly into the task formulation as kinematic constraints. The configuration control approach is ex tended to exploit the redundancy introduced by the base mobility to perform a set of user-specified additional tasks during the end- effector motion while satisfying the nonholonomic base constraints (if applicable). This approach treats the base nonholonomy and the kinematic redundancy in a unified manner to formulate new task constraints. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation. Two simulation studies are presented to demonstrate the applica tions of the motion control scheme to a rover-mounted arm (non holonomic system) and to a tracked robot (holonomic system).

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. End-effector path tracking of a 14 DOF Rover Manipulator System in CG-Space framework;Robotica;2023-11-17

2. Mobile Composite Robotic Arm Modelling and External Coupling Control;2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2023-05-19

3. 输入受限的超冗余移动医疗机械臂混合控制;Journal of Shanghai Jiaotong University (Science);2023-02-21

4. Chance-Constrained Planning for Dynamically Stable Motion of Reconfigurable Vehicles;IEEE Transactions on Intelligent Transportation Systems;2023

5. Mobile Manipulators;Encyclopedia of Robotics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3