Multilevel Monte Carlo for solving POMDPs on-line

Author:

Hoerger Marcus1ORCID,Kurniawati Hanna2,Elfes Alberto3

Affiliation:

1. School of Mathematics and Physics, The University of Queensland, Australia

2. School of Computing, The Australian National University, Canberra, ACT, Australia

3. Robotics and Autonomous Systems Group, Data61, CSIRO, Pullenvale, QLD, Australia

Abstract

Planning under partial observability is essential for autonomous robots. A principled way to address such planning problems is the Partially Observable Markov Decision Process (POMDP). Although solving POMDPs is computationally intractable, substantial advancements have been achieved in developing approximate POMDP solvers in the past two decades. However, computing robust solutions for systems with complex dynamics remains challenging. Most on-line solvers rely on a large number of forward simulations and standard Monte Carlo methods to compute the expected outcomes of actions the robot can perform. For systems with complex dynamics, for example, those with non-linear dynamics that admit no closed-form solution, even a single forward simulation can be prohibitively expensive. Of course, this issue exacerbates for problems with long planning horizons. This paper aims to alleviate the above difficulty. To this end, we propose a new on-line POMDP solver, called Multilevel POMDP Planner (MLPP), that combines the commonly known Monte-Carlo-Tree-Search with the concept of Multilevel Monte Carlo to speed up our capability in generating approximately optimal solutions for POMDPs with complex dynamics. Experiments on four different problems involving torque control, navigation and grasping indicate that MLPP substantially outperforms state-of-the-art POMDP solvers.

Funder

ANU Futures Scheme

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3