Closed-loop control of magnetotactic bacteria

Author:

Khalil Islam S. M.1,Pichel Marc P.1,Abelmann Leon2,Misra Sarthak1

Affiliation:

1. MIRA–Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands

2. MESA+ Institute for Nanotechnology, University of Twente, The Netherlands

Abstract

Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB. This approach is based on the characterization of the magnetic dipole moment of the MTB and its response to a field with alternating direction. We do not only find agreement between our characterized magnetic dipole moment and previously published results, but also observe that the velocity of the MTB decreases by 37% when a field with alternating direction is applied at 85 Hz. The characterization results allow us to devise a null-space control approach which capitalizes on the redundancy of magnetic-based manipulation systems. This approach is based on two inputs. The first controls the orientation of the MTB, whereas the second generates a field with alternating direction to decrease its velocity. This control is accomplished by the redundancy of our magnetic-based manipulation system which allows for the projection of the second input onto the null-space of the magnetic force-current map of our system. A proportional–derivative control system positions the MTB at an average velocity and region of convergence of 29 μm s−1 and 20 μm, respectively, while our null-space control system achieves an average velocity and region of convergence of 15 μm s−1 and 13 μm, respectively.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3