Planning Multi-Step Error Detection and Recovery Strategies

Author:

Donald Bruce R.1

Affiliation:

1. Computer Science Department Cornell University Ithaca, New York 14853

Abstract

Robots must plan and execute tasks in the presence of uncer tainty. Uncertainty arises from sensing errors, control errors, and the geometry of the environment. By employing a com bined strategy offorce and position control, a robot program mer can often guarantee reaching the desired final configura tion from all the likely initial configurations. Such motion strategies permit robots to carry out tasks in the presence of significant uncertainty. However, compliant motion strategies are very difficult for humans to specify. For this reason we have been working on the automatic synthesis of motion strategies for robots. In previous work (Donald 1988b; 1989), we presented a framework for computing one-step motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions. However, it is not always possible to find plans that are guaranteed to succeed. For example, if tolerancing errors render an assembly infeasible, the plan executor should stop and signal failure. In such cases the insistence on guaranteed success is too restrictive. For this reason we investigate error detection and recovery (EDR) strategies. EDR plans will succeed or fail recognizably: in these more general strategies, there is no possibility that the plan will fail without the exec utor realizing it. The EDR framework fills a gap when guar anteed plans cannot be found or do not exist; it provides a technology for constructing plans that might work, but fail in a "reasonable" way when they cannot. We describe techniques for planning multi-step EDR strat egies in the presence of uncertainty. Multi-step strategies are considerably more difficult to generate, and we introduce three approaches for their synthesis: these are the Push-for ward Algorithm, Failure Mode Analysis, and the Weak EDR Theory. We have implemented the theory in the form of a planner, called LIMITED, in the domain ofplanar assemblies.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3