Affiliation:
1. Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza", Via Ariosto 25, 00185 Roma, Italy,
Abstract
In the classical image-based visual servoing framework, error signals are directly computed from image feature parameters, allowing, in principle, control schemes to be obtained that need neither a complete three-dimensional (3D) model of the scene nor a perfect camera calibration. However, when the computation of control signals involves the interaction matrix, the current value of some 3D parameters is requiredfor each considered feature, and typically a rough approximation of this value is used. With reference to the case of a point feature, for which the relevant 3D parameter is the depth Z, we propose a visual servoing approach where Z is observed and made available for servoing. This is achieved by interpreting depth as an unmeasurable state with known dynamics, and by building a non-linear observer that asymptotically recovers the actual value of Z for the selected feature. A byproduct of our analysis is the rigorous characterization of camera motions that actually allow such observation. Moreover, in the case of a partially uncalibrated camera, it is possible to exploit complementary camera motions in order to preliminarily estimate the focal length without knowing Z. Simulations and experimental results are presented for a mobile robot with an on-board camera in order to illustrate the benefits of integrating the depth observation within classical visual servoing schemes.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献