Biologically inspired collective comparisons by robotic swarms

Author:

Parker Chris A C1,Hong Zhang 2

Affiliation:

1. Department of Mechanical Engineering, University of British Columbia, Canada,

2. Department of Computing Science, University of Alberta, Canada

Abstract

Intelligent entities must often make decisions by comparing several candidate alternatives and selecting the best one. This is just as true for autonomous swarms as it is for solitary robots, but to date there has been little work to propose efficient comparison behaviors for autonomous robotic swarms that are not tied to specific environments. In this work, we examine an elegant collective comparison strategy that is used by at least three different species of social insect and adapt it for artificial systems. The behavior is particularly attractive for robotic implementations because it relies only on short range explicit peer-to-peer communication, eliminating the need for chemical trails or other forms of stigmergy. The proposed comparison strategy is proven to converge, and a series of experiments using real robots with noisy sensors is presented that validates our theoretical analysis. Using the proposed behavior, a robotic swarm is able to compare alternatives collectively more accurately than its member robots would be able to individually.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Reference41 articles.

1. Trail laying behaviour during food recruitment in the antLasius niger (L.)

2. Colony Size, Communication and Ant Foraging Strategy

3. Beckers R., Holland OE and Deneubourg J. ( 1994) From local actions to global tasks: Stigmergy and collective robotics. In: Brooks R and Maes P (eds.) Artificial Life IV. MIT Press, 181-189.

4. Learning from House-Hunting Ants: Collective Decision-Making in Organic Computing Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3