Interference-Free Insertion of a Solid Body Into a Cavity: An Algorithm and a Medical Application

Author:

Joskowicz Leo1,Taylor Russell H.2

Affiliation:

1. Institute of Computer Science The Hebrew University Jerusalem 91904, Israel

2. Computer Science Department The Johns Hopkins University Baltimore, Maryland 21218

Abstract

This article presents a novel algorithm for efficiently computing an interference-free insertion path of a body into a cavity and shows its practical use in the insertability analysis of custom orthopedic hip implants. The algorithm is designed to handle tightly fit, very complex three-dimensional bodies requiring fine, complex, coupled six-degree-of-freedom motions in a preferred direction. It provides a practical method for efficiently handling the geometric complexity of tight-fit insertions. The algorithm computes an insertion path consisting of small interference-free body motion steps. It formulates local, linearized configuration space constraints derived from the shapes and computes suc cessive motion steps by solving a series of linear optimization problems whose solution corresponds to the maximum allowed displacement in a preferred direction satisfying the constraints. It either finds a successful insertion path or a stuck conftgura tion. We demonstrate the algorithm with EXTRACT, a program for analyzing the insertability of cementless custom orthopedic hip implants. EXTRACT computes interference-free insertion paths for tightly fit implant and canal shapes described with 10,000 facets to an accuracy of 0.01 inch in 30 minutes on a workstation. It has been successfully tested on 30 real cases provided by a medical equipment manufacturer.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3