Joint search of optimal topology and trajectory for planar linkages

Author:

Pan Zherong12ORCID,Liu Min3ORCID,Gao Xifeng24,Manocha Dinesh3

Affiliation:

1. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

2. Lightspeed & Quantum Studio, Tencent America, Bellevue, WA, USA

3. Department of Computer Science and Electrical & Computer Engineering, University of Maryland at College Park, College Park, MD, USA

4. Department of Computer Science, Florida State University, Tallahassee, FL, USA

Abstract

We present an algorithm to compute planar linkage topology and geometry, given a user-specified end-effector trajectory. Planar linkage structures convert rotational or prismatic motions of a single actuator into an arbitrarily complex periodic motion, which is an important component when building low-cost, modular robots, mechanical toys, and foldable structures in our daily lives (chairs, bikes, and shelves). The design of such structures requires trial and error even for experienced engineers. Our research provides semi-automatic methods for exploring novel designs given high-level specifications and constraints. We formulate this problem as a non-smooth numerical optimization with quadratic objective functions and non-convex quadratic constraints involving mixed-integer decision variables (MIQCQP). We propose and compare three approximate algorithms to solve this problem: mixed-integer conic-programming (MICP), mixed-integer nonlinear programming (MINLP), and simulated annealing (SA). We evaluated these algorithms searching for planar linkages involving 10 − 14 rigid links. Our results show that the best performance can be achieved by combining MICP and MINLP, leading to a hybrid algorithm capable of finding the planar linkages within a couple of hours on a desktop machine, which significantly outperforms the SA baseline in terms of optimality. We highlight the effectiveness of our optimized planar linkages by using them as legs of a walking robot.

Funder

Army Research Office

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3