Affiliation:
1. Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2. School of Computer Science, University of Birmingham, UK
Abstract
Room categorization, that is, recognizing the functionality of a never before seen room, is a crucial capability for a household mobile robot. We present a new approach for room categorization that is based on two-dimensional laser range data. The method is based on a novel spatial model consisting of mid-level parts that are built on top of a low-level part-based representation. The approach is then fused with a vision-based method for room categorization, which is also based on a spatial model consisting of mid-level visual parts. In addition, we propose a new discriminative dictionary learning technique that is applied for part-dictionary selection in both laser-based and vision-based modalities. Finally, we present a comparative analysis between laser-based, vision-based, and laser-vision-fusion-based approaches in a uniform part-based framework, which is evaluated on a large dataset with several categories of rooms from domestic environments.
Funder
EPSRC/MOD
Javna Agencija za Raziskovalno Dejavnost RS
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献