Robust grasping across diverse sensor qualities: The GraspNet-1Billion dataset

Author:

Fang Hao-Shu1ORCID,Gou Minghao1,Wang Chenxi1,Lu Cewu12

Affiliation:

1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Shanghai AI Lab, China

Abstract

Robust object grasping in cluttered scenes is vital to all robotic prehensile manipulation. In this paper, we present the GraspNet-1Billion benchmark that contains rich real-world captured cluttered scenarios and abundant annotations. This benchmark aims at solving two critical problems for the cluttered scenes parallel-finger grasping: the insufficient real-world training data and the lacking of evaluation benchmark. We first contribute a large-scale grasp pose detection dataset. Two different depth cameras based on structured-light and time-of-flight technologies are adopted. Our dataset contains 97,280 RGB-D images with over one billion grasp poses. In total, 190 cluttered scenes are collected, among which 100 are training set and 90 are for testing. Meanwhile, we build an evaluation system that is general and user-friendly. It directly reports a predicted grasp pose’s quality by analytic computation, which is able to evaluate any kind of grasp representation without exhaustively labeling the ground-truth. We further divide the test set into three difficulties to better evaluate algorithms’ generalization ability. Our dataset, accessing API and evaluation code, are publicly available at www.graspnet.net.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in One-Shot;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. A Surprisingly Efficient Representation for Multi-Finger Grasping;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. AirExo: Low-Cost Exoskeletons for Learning Whole-Arm Manipulation in the Wild;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3