A framework for learning semantic maps from grounded natural language descriptions

Author:

Walter Matthew R.1,Hemachandra Sachithra1,Homberg Bianca1,Tellex Stefanie2,Teller Seth1

Affiliation:

1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

2. Department of Computer Science, Brown University, Providence, RI, USA

Abstract

This paper describes a framework that enables robots to efficiently learn human-centric models of their environment from natural language descriptions. Typical semantic mapping approaches are limited to augmenting metric maps with higher-level properties of the robot’s surroundings (e.g. place type, object locations) that can be inferred from the robot’s sensor data, but do not use this information to improve the metric map. The novelty of our algorithm lies in fusing high-level knowledge that people can uniquely provide through speech with metric information from the robot’s low-level sensor streams. Our method jointly estimates a hybrid metric, topological, and semantic representation of the environment. This semantic graph provides a common framework in which we integrate information that the user communicates (e.g. labels and spatial relations) with metric observations from low-level sensors. Our algorithm efficiently maintains a factored distribution over semantic graphs based upon the stream of natural language and low-level sensor information. We detail the means by which the framework incorporates knowledge conveyed by the user’s descriptions, including the ability to reason over expressions that reference yet unknown regions in the environment. We evaluate the algorithm’s ability to learn human-centric maps of several different environments and analyze the knowledge inferred from language and the utility of the learned maps. The results demonstrate that the incorporation of information from free-form descriptions increases the metric, topological, and semantic accuracy of the recovered environment model.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling Approach Matters: Active Learning for Robotic Language Acquisition;2020 IEEE International Conference on Big Data (Big Data);2020-12-10

2. Object Semantic Grid Mapping with 2D LiDAR and RGB-D Camera for Domestic Robot Navigation;Applied Sciences;2020-08-21

3. Multimodal estimation and communication of latent semantic knowledge for robust execution of robot instructions;The International Journal of Robotics Research;2020-06-05

4. Object-oriented Semantic Graph Based Natural Question Generation;2020 IEEE International Conference on Robotics and Automation (ICRA);2020-05

5. Real-Time Human-Robot Communication for Manipulation Tasks in Partially Observed Environments;Springer Proceedings in Advanced Robotics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3