Affiliation:
1. Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195,
Abstract
Learning patterns of human behavior from sensor data is extremely important for high-level activity inference. This paper describes how to extract a person’s activities and significant places from traces of GPS data. The system uses hierarchically structured conditional random fields to generate a consistent model of a person’s activities and places. In contrast to existing techniques, this approach takes the high-level context into account in order to detect the significant places of a person. Experiments show significant improvements over existing techniques. Furthermore, they indicate that the proposed system is able to robustly estimate a person’s activities using a model that is trained from data collected by other persons.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
252 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献