A Generalized Practical Method for Analytic Solution of the Constrained Inverse Kinematics Problem of Redundant Manipulators

Author:

Abdel-Rahman Tarek M.1

Affiliation:

1. Mechanical Engineering Department Qatar University Doha, Qatar

Abstract

This article addresses four important issues relating to practical solutions of the inverse kinematics problem of redundant manipulators. First, a generalized recursive method for systematic derivation of analytic expressions for all possible solutions of any redundant manipulator is presented. The method possesses the advantage of identi fying the linear dependence among joint axes and hence allows all singular configurations to be determined. Sec ond, a joint constraint mapping approach for the inte grated consideration of all joint constraints in the solution procedure of the inverse kinematics problem is presented. The result leads to practical real-time procedures. Map ping of the joint position and actuation constraints onto joint rate space is described. Third, simplification of end- effector velocity equations is shown to be possible for most practical manipulator structures by decomposing the end-effector work space into two orthogonal complement sub-work spaces. The decomposed velocity equations have smaller dimensions and, hence, are easier to solve. In manipulator design, structures can be selected for effi cient kinematics manipulation and simplified end-effector velocity equations. To achieve this purpose, type-synthesis design guidelines are given for efficient decomposition or decoupling of the work space. Fourth, two general approaches are described for optimally resolving the kine matics redundancy. The first approach maximizes the end- effector speed in a prescribed direction, while the second approach minimizes a quadratic objective function defined by the user. Examples on work space decomposition and optimal solution of kinematic redundancy are given. In both cases, expressions for the general analytic solution are derived.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Reference22 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3