Hypothesis selection with Monte Carlo tree search for feature-based simultaneous localization and mapping in non-static environments

Author:

Nielsen Kristin12ORCID,Hendeby Gustaf2

Affiliation:

1. Epiroc Rock Drills AB, Örebro, Sweden

2. Department of Electrical Engineering, Linköping University, Linkoping, Sweden

Abstract

A static world assumption is often used when considering the simultaneous localization and mapping (SLAM) problem. In reality, especially when long-term autonomy is the objective, this is not a valid assumption. This paper studies a scenario where landmarks can occupy multiple discrete positions at different points in time, where each possible position is added to a multi-hypothesis map representation. A selector-mixture distribution is introduced and used in the observation model. Each landmark position hypothesis is associated with one component in the mixture. The landmark movements are modeled by a discrete Markov chain and the Monte Carlo tree search algorithm is suggested to be used as component selector. The non-static environment model is further incorporated into the factor graph formulation of the SLAM problem and is solved by iterating between estimating discrete variables with a component selector and optimizing continuous variables with an efficient state-of-the-art nonlinear least squares SLAM solver. The proposed non-static SLAM system is validated in numerical simulation and with a publicly available dataset by showing that a non-static environment can successfully be navigated.

Funder

Knut och Alice Wallenbergs Stiftelse

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Reference47 articles.

1. The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario

2. Agarwal S, Mierle K, The Ceres Solver Team (2022) Ceres solver. URL https://github.com/ceres-solver/ceres-solver.

3. Robotic mapping of underground mine passageways

4. Identifying robust landmarks in feature-based maps

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3