Two-Handed Assembly Sequencing

Author:

Wilson Randall H.1,Kavraki Lydia2,Latombe Jean-Claude2,Lozano-Pérez Tomás3

Affiliation:

1. Intelligent Systems and Robotics Center Sandia National Laboratories Albuquerque, New Mexico 87185-0951

2. Computer Science Robotics Laboratory Stanford University Stanford, California 94305

3. Massachusetts Institute of Technology Artificial Intelligence Laboratory Cambridge, Massachusetts 02139

Abstract

This article considers the computational complexity of automat ically determining assembly sequences for mechanical products. Specifically, we address the partitioning problem: given an assembly of rigid parts, identify a proper subassembly that can be removed as a rigid object without disturbing the rest of the assembly. We examine the complexity of the partition ing problem under various types of relative motions allowed for the subassemblies. We show that when arbitrary motions are allowed to separate the two subassemblies, partitioning is NP-complete. We then describe a general framework for reasoning about assembly motions called the interference diagram. In its most general form the interference diagram yields an exponential- time algorithm to partition an assembly. However, two special cases of the interference diagram studied in this article yield polynomial-time sequencing algorithms. The first case occurs when assembly motions are restricted to single translations. The second case considers infinitesimal rigid motions in translation and rotation and yields a superset of all feasible partitionings. These two algorithms have important practical applications in assembly planning.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3