Force Analysis of Connected Differential Mechanisms: Application to Grasping

Author:

Birglen Lionel1,Gosselin Clément M.2

Affiliation:

1. Department of Mechanical Engineering Laval University, Québec, Qc G1K 7P4, Canada, Department of Mechanical Engineering, Ecole Polytechnique of Montreal, Montreal, QC, H3T 1J4, Canada, ,

2. Department of Mechanical Engineering Laval University, Québec, Qc G1K 7P4, Canada,

Abstract

In this paper, a methodology is proposed for the analysis of the force capabilities of connected differential mechanisms. These systems are the key elements used to extend the principle of underactuation in grasping from the fingers to the hand itself. The concept of under-actuation in robotic grasping—with fewer actuators than degrees of freedom (DOF)—allows the hand to adjust itself to an irregularly shaped object without complex control strategies and sensors. Several technological solutions have been proposed in the past but no theoretical background has been provided to analyze their characteristics, especially with respect to the forces generated. The purpose of this paper is to provide such a theoretical foundation and to illustrate its usefulness with examples applied to grasping. First, several differential elements are presented and studied. Second, a mathematical method to obtain the output force capabilities of connected differential mechanisms is presented. Finally, the technique presented is applied to two types of underactuated robotic hands.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3