Adaptive communication in multi-robot systems using directionality of signal strength

Author:

Gil Stephanie1,Kumar Swarun1,Katabi Dina1,Rus Daniela1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

We consider the problem of satisfying communication demands in a multi-agent system where several robots cooperate on a task and a fixed subset of the agents act as mobile routers. Our goal is to position the team of robotic routers to provide communication coverage to the remaining client robots. We allow for dynamic environments and variable client demands, thus necessitating an adaptive solution. We present an innovative method that calculates a mapping between a robot’s current position and the signal strength that it receives along each spatial direction, for its wireless links to every other robot. We show that this information can be used to design a simple positional controller that retains a quadratic structure, while adapting to wireless signals in real-world environments. Notably, our approach does not necessitate stochastic sampling along directions that are counter-productive to the overall coordination goal, nor does it require exact client positions, or a known map of the environment.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RELINK: Real-Time Line-of-Sight-Based Deployment Framework of Multi-Robot for Maintaining a Communication Network;IEEE Robotics and Automation Letters;2023-12

2. Cloud-Cluster Architecture for Detection in Intermittently Connected Sensor Networks;IEEE Transactions on Wireless Communications;2023-02

3. Toolbox Release: A WiFi-Based Relative Bearing Framework for Robotics;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

4. A wireless signal-based sensing framework for robotics;The International Journal of Robotics Research;2022-08-26

5. Semi-Decentralized Federated Learning with Collaborative Relaying;2022 IEEE International Symposium on Information Theory (ISIT);2022-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3